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ABSTRACT

This paper investigates decision fusion in millimeter wave (mmWave)
massive multiple-input multiple-output (MIMO) wireless sensor net-
work (WSNs), where the sparse Bayesian learning (SBL) algorithm
is employed to estimate the channel between the sensors and the
fusion center (FC). We present low-complexity fusion rules based
on the hybrid combining architecture for the considered framework.
Further, a deflection coefficient maximization-based optimization
framework is developed to determine the transmit signaling ma-
trix that can improve detection performance. The performance of
the proposed fusion rule is presented through simulation results
demonstrating the validation of the analytical findings.

Index Terms— Distributed detection, hybrid combining, mas-
sive MIMO, mmWave communication, sparse Bayesian learning,
wireless sensor networks.

1. INTRODUCTION

Wireless sensor networks (WSNs) are conceived to play a pivotal
role in next-generation wireless systems due to their applicability in
diverse domains related to surveillance, disaster management, health
care, and several others [1]. In such systems, the sensors typically
transmit their local decisions about an observed phenomenon to a
fusion center (FC) for a global decision obtained using a suitably
designed fusion rule, which is termed decision fusion [2].

The growing interest in such applications, along with the dras-
tic increase in the number of sensors, results in severe bandwidth
scarcity in the sub-6 GHz band. To overcome this challenge, mil-
limeter wave (mmWave) technology, which leverages the spectrum
ranging from 30 - 300 GHz, has shown significant potential in
realizing bandwidth-intensive and high-speed applications in next-
generation wireless networks [3]. However, practical concerns
arise in implementing the mmWave technology, such as higher path
losses, severe signal blockages, and increased hardware complexity.
In this context, massive MIMO technology, where a large antenna
array is deployed at the FC to simultaneously communicate with
multiple sensors using the same time-frequency resource, serves as
a promising solution [4]. Further, the short wavelength of mmWave
signals enables the close packing of a large number of antennas
within limited physical dimensions, which helps in realizing prac-
tical mmWave massive MIMO systems. In such systems, the use
of conventional fully digital baseband signal processing (DSP) ar-
chitectures, which require a dedicated radio frequency (RF) chain
per antenna, seems practically infeasible because of its high cost,
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complexity, and high power consumption. Thus, hybrid combining-
based architecture, wherein the signal is processed in both the analog
and digital domains, has shown to be well suited for mmWave mas-
sive MIMO systems as one can significantly reduce the number of
RF chains and hence the power consumption [5].

The advantages offered by hybrid combining architecture may
serve beneficial for decision fusion in mmWave massive MIMO
WSNs. In this context, distributed detection for massive MIMO
WSN has been investigated in [6–8]. Further, fusion rules are
designed for the mmWave massive MIMO WSN in [9, 10]. How-
ever, the proposed analysis is restricted to the perfect CSI scenario.
Considering the imperfect CSI scenario, sparse Bayesian learning
(SBL) based fusion rules are determined in [11] for data fusion
in mmWave massive MIMO WSN, wherein the sensors transmit
their measurements instead of their decisions to the FC. However,
none of the existing works have proposed fusion rules for decision
fusion in mmWave massive MIMO WSNs considering imperfect CSI.
The novelty of our work can be summarized as follows: (i) we
exploit the joint advantages of mmWave and massive MIMO to
design low-complexity fusion rules for decision fusion in a scenario
where sensors transmit their binary decision vectors over one or
more signaling intervals corresponding to their local decisions [12],
which are susceptible to errors, to a massive antenna equipped FC
over a mmWave channel; (ii) proposed fusion rules utilize the hy-
brid combining architecture, i.e. fewer RF chains as compared to
a fully-DSP architecture, thus reducing the energy consumption
associated with A/D components; (iii) the detection rules account
for a realistic scenario with imperfect CSI, where the channel is
estimated using the novel SBL framework; (iv) deflection coeffi-
cient maximization based transmit signaling matrix is derived to
enhance the detection performance. The proposed fusion rules and
the corresponding theoretical analysis in terms of closed-form ex-
pressions of probabilities of detection and false alarm are crucial to
facilitate reliable decision-making by processing massive amount
of sensor data related to mission-critical applications. Moreover,
the simulation results assessed our analytical findings and examined
the impact of the number of receive antennas and the number of
signaling intervals on the system performance.

2. SYSTEM MODEL

Consider a distributed binary test of hypotheses, where K single-
antenna sensors observe a phenomenon of interest to distinguish
between the hypotheses in the set H = {H0,H1}. Based on its
measurement, the kth sensor, k ∈ K ≜ {1, 2, ...,K}, makes a lo-
cal decision about the observed phenomenon and transmits a vector
xk = [xk(1), xk(2), . . . , xk(L)]

T over L signaling intervals about
the presence/absence of the phenomenon of interest. Under an an-IC
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Algorithm 1: SBL-assisted CSI estimation in mmWave
massive MIMO sensor networks

Input : Sensing matrix Q, pilot output y, pilot power pp
and stopping parameter ϵ

1 Initialization: Γ̂(0) = IMK

2 Set s = 0 and Γ̂(−1) = 0MK×MK

3 while ∥Γ̂(s) − Γ̂(s−1)∥F > ϵ do
4 E-step: Evaluate a posteriori covariance and mean

5 Σ(s) =
(
ppQ

HC−1
w Q+

(
Γ̂(s)

)−1
)−1

6 µ(s) =
√
ppΣ

(s)QHC−1
w y

7 M-step: Evaluate hyperparameter estimates
8 for j = 1, 2, . . . ,MK do

9
[
Γ̂(s+1)

]
j,j

=
[
Σ(s)

]
j,j

+

∣∣∣∣[µ(s)
]
j

∣∣∣∣2
10 end for
11 s← s+ 1
12 end while

Output: ĥb = µ(s)

tipodal signaling scheme, the kth sensor transmits xk ∈ {−uk,uk}
indicating the absence (H0) or the presence (H1) of the phenomenon
of interest. Further, the local probabilities of false alarm and detec-
tion of the kth sensor are defined as PF,k = P (xk = uk|H0) and
PD,k = P (xk = uk|H1), respectively.

The sensors communicate with a fusion center (FC) equipped
with M antennas and N radio frequency (RF) chains over a wire-
less flat-fading multiple access channel (MAC), where M ≫ K
and N = K, which implies that each sensor can communicate with
the FC via a single data stream. Let G = ARHb ∈ CM×K be
the mmWave channel matrix from the K sensors to the FC, AR ≜
[aR(ψ1),aR(ψ2), . . . ,aR(ψM )] ∈ CM×M be the quantized re-
ceive array response dictionary matrix, where the set of quantized
angle of arrival (AoA) ΨR = {ψv,∀1 ≤ v ≤ M} spans the an-
gular range [0, π] such that sin(ψv) = 2

M
(v − 1) − 1, ∀v [13] and

Hb ∈ CM×K be the equivalent beamspace channel matrix. Further,
the receive array response vector aR(ψv) is defined as aR(ψv) =

1√
M
[1, ej

2πd
λ

sin(ψv), . . . , ej
2πd
λ

sin(ψv)(M−1)]T , where d is the re-
ceive antenna spacing and λ is the operating wavelength. When the
angle grids ψv satisfy the condition sin(ψv) = 2

M
(v − 1) − 1, ∀v

and d = λ/2, then ARA
H
R = AH

RAR = IM [13]. Therefore, the
received signal Y ∈ CM×L at the FC corresponding to L signaling
intervals is given by

Y =
√
puGX+N, (1)

where pu is the average transmit power of each sensor, X =
[x1,x2, . . . ,xK ]T ∈ CK×L is the transmitted signal matrix and the
noise matrix N has i.i.d entries, distributed as ni,j ∼ CN (0, σ2

n).

3. CHANNEL ESTIMATION

For channel estimation, consider the transmission of a block of
Nf = M/K training frames such that the channel is assumed
to be constant over Nf frames. Therefore, the received signal
Y(n) ∈ CK×K at the FC during the nth training frame can be
expressed as Y(n) =

√
pp(F

(n))HGXp + (F(n))HN, where the
training RF combiner F(n) ∈ CM×K during the nth frame is chosen

as the submatrix of the normalized DFT matrix F ∈ CM×M , the
orthogonal training matrix Xp is chosen as IK and pp is the train-
ing power. After stacking Nf RF combiner outputs, the equivalent
system model can be expressed as

Y =
√
ppF

HGXp + FHN, (2)

where F =
[
F(1),F(2), . . . ,F(Nf )

]
∈ CM×M is the equivalent

training RF combiner. On stacking the columns of the matrix Y one
below another, one obtains

y =
√
ppQhb +w, (3)

where Q = (XT
p ⊗ FH)(IK ⊗ AR) ∈ CMK×MK is the equiv-

alent sensing matrix such that QHQ = IMK , hb = vec(Hb) is
the vectorized version of the matrix Hb and w = vec(FHN) ∼
CN (0,Cw) is the equivalent noise vector with Cw = σ2

nIMK . Us-
ing the received observation vector y in (3), the SBL estimate of the
beamspace channel vector hb can be determined as discussed in Al-
gorithm 1. By virtue of EM algorithm properties, the convergence
of SBL algorithm is guaranteed to a fixed point of the log-likelihood
function, irrespective of initialization, which renders its performance
robust and ideally suited for mmWave channel estimation. Further,
it yields the maximally-sparse solution and guaranteed convergence
at a low number of iterations.

Upon convergence, the estimated beamspace channel vector can
be expressed as ĥb = µ(s), where µ(s) is the a posteriori mean,
and the a posteriori covariance matrix is given by Σ = Σ(s) ∈
CMK×MK , which is diagonal. Using the above quantities, the SBL
estimate of G can be given as Ĝ = ARĤb [14], where Ĥb =
vec−1(ĥb). Let Eb = Ĥb −Hb be the beamspace estimation error
matrix, E = [e1, . . . , eK ] = Ĝ − G = AREb be the estima-
tion error matrix and ek ∼ CN (0,Cek ) is the kth sensor estima-
tion error with Cek = ARΣkA

H
R and Σk = Σ[(k − 1)M + 1 :

kM, (k − 1)M + 1 : kM ].

4. FUSION RULE DESIGN

Using the estimated channel, the signal received at the FC can be
remodeled as

Y =
√
puĜX−√puEX+N. (4)

For the above system model, the optimal fusion rule, i.e. the log-
likelihood ratio (LLR) test is formulated as

T (Y) = ln

[
p(Y|Ĝ,H1)

p(Y|Ĝ,H0)

]
, (5)

where γ is the detection threshold and can be obtained using the
Neyman-Pearson criterion or Bayesian approach [15]. Exploiting
the independence of Y from Hi, given X, an explicit expression of
the LLR in (5) is determined as

T (Y) = ln

[∑
X p(Y|Ĝ,X)P (X|H1)∑
X p(Y|Ĝ,X)P (X|H0)

]
. (6)

Unfortunately, the above test has exponential computational com-
plexity with the number of sensors K and requires the knowledge
of P (X|Hi) and Ĝ. Hence, the test becomes numerically in-
tractable. To overcome this challenge, a two-step architecture is
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employed to design sub-optimal decision fusion rules with a sim-
pler implementation. The first step utilizes a hybrid combining
architecture at the FC denoted by W = WRFWBB ∈ CM×K ,
where WRF and WBB represent the analog and digital combin-
ers, respectively. The processed signals are further combined
in the second step to form a final decision. The RF combiner
WRF = [aR(ψj1),aR(ψj2), . . . ,aR(ψjK )] ∈ CM×K is designed
by selecting the receive array response vectors for each sensor cor-
responding to the indices of the maximum estimated path gains in
Ĥb such that jk denotes the index in the kth column of Ĥb linked
with the maximum estimated path gain. Further, the baseband
combiner is determined as WBB = WH

RFĜ ∈ CK×K . Under the
assumption that different AoAs are assigned to different sensors and
exploiting the asymptotic orthogonality property of the mmWave
massive MIMO channel [16], the baseband combiner WBB can be
approximated as a diagonal matrix with its kth diagonal entry as
[WBB]k,k = ĥjk,k = [Ĥb]jk,k. Consequently, the hybrid combiner
output of the kth sensor can be approximated as

zk ≈
√
puğkxk + ηk, (7)

where ğk = |ĥjk,k|
2 and ηk ∼ CN (0, σ2

ηkIL) with σ2
ηk =

puğka
H
R (ψjk )AR(

∑K
i=1 Cei)A

H
RaR(ψjk ) + ğkσ

2
w is the equiva-

lent noise vector. Using the hybrid combiner outputs of K sensors,
the LLR test for decision fusion in mmWave massive MIMO WSN
considering CSI uncertainty can be formulated as

T (Z)= ln

[
p(Z|H1)

p(Z|H0)

]
= ln

[
K∏
k=1

p(zk|H1)

p(zk|H0)

]
(8)

=

K−1∑
k=0

ln

PD,k+(1−PD,k)exp
(
−4√puğkℜ

(
zHk uk

σ2
ηk

))
PF,k+(1−PF,k)exp

(
−4√puğkℜ

(
zH
k

uk

σ2
ηk

))
 , (9)

where the expression in (8) is obtained by exploiting the indepen-
dence of zk across different sensors. Further, the above test can be
simplified for the low SNR regime by leveraging the approximations
e−x ≈ 1− x and ln(1 + x) ≈ x, as

T (Z) =

K−1∑
k=0

akğkℜ
(
zHk uk
σ2
ηk

)
H1

≷
H0

γ′, (10)

where ak ≜ PD,k − PF,k. Observe that the test T (Z) in (10) has
a linear structure and hence, low computational complexity. More-
over, the proposed detector for the low SNR regime is appropriate for
practical implementation as WSNs are usually resource-constrained,
especially in terms of transmit power. The detection performance of
the above test is discussed in the theorem below.

Theorem 1. For mmWave massive MIMO WSN, the probabilities of
detection (PD) and false alarm (PFA) for the fusion rule in (10)
can be determined as

PD = Q

(
γ′ − µT |H1

σT |H1

)
, PFA = Q

(
γ′ − µT |H0

σT |H0

)
,

where the mean µT |Hi
and the variance σ2

T |Hi
are defined as

µT |Hi
=

K−1∑
k=0

√
pu

σ2
ηk

akb
i
kğ

2
k∥uk∥2, (11)

σ2
T |Hi

=

K−1∑
k=0

a2k
ğ2k
σ2
ηk

∥uk∥2
(
pu
σ2
ηk

ğ2k∥uk∥2
(
1−(bik)2

)
+
1

2

)
, (12)

where b0k = 2PF,k − 1 and b1k = 2PD,k − 1.

The fusion rule in (9) can be further simplified for the high
SNR regime by exploiting the max-log approximation [17], as
Tmax-log(Z) =

∑K−1
k=0 Tmax-log(zk). Further, the sensor Tmax-log(zk)

can be expressed as

Tmax-log(zk) =


γ1,k, sk < α1,k

2sk + γ2,k, α1,k ≤ sk < α2,k

γ3,k, sk ≥ α2,k

, (13)

where sk = exp(2
√
puğkℜ{(zHk uk)/σ

2
ηk}), γ1,k = ln((1 −

PD,k)/(1 − PF,k)), γ2,k = ln(PD,k/(1 − PF,k)), γ2,k =
ln(PD,k/PF,k), α1,k = ln((1 − PD,k)/PD,k)/2 and α2,k =
ln((1− PF,k)/PF,k)/2.

5. TRANSMIT SIGNALING MATRIX DESIGN

This section presents a deflection coefficient maximization-based
optimization framework to design the signaling matrix X to improve
the detection performance of the proposed fusion rule. Consider a
vector u ∈ CKL×1, obtained by the column-wise stacking of the
matrix U = [u1,u2, . . . ,uK ] ∈ CL×K , i.e., u = vec(U). For the
signaling vector u, the deflection metric can be expressed as [15]

d2(u) =
(µT |H1

− µT |H0
)2

σ2
T |H0

. (14)

On substituting the quantities µT |H1
, µT |H0

and σ2
T |H0

from Theo-
rem 1, the above expression reduces to

d2(u)=

(
K−1∑
k=0

√
pu

σ2
ηk

akğ
2
k(b

1
k − b0k)∥uk∥2

)2

K−1∑
k=0

a2
k

σ2
ηk

ğ2k∥uk∥2
(
pu
σ2
ηk

ğ2k∥uk∥2
(
1−(b0k)2

)
+ 1

2

) . (15)

Let the diagonal elements of the matrices Θ ∈ CK×K , Γ ∈ CK×K

and Ψ ∈ CK×K be defined as

[Θ]k,k =

√
pu

σ2
ηk

akğ
2
k(b

1
k − b0k), [Γ]k,k =

√
pu

σ2
ηk

akğ
2
k

√
1− (b0k)

2,

[Ψ]k,k =
a2k

2σ2
ηk

ğ2k.

Using the above quantities, the deflection measure in (15) can be
approximated as d2(u) ≈ (uHΘu)2

(uHΓu)2+uHΨu
. However, the above ex-

pression is non-convex, hence, its direct maximization is difficult.
To obtain a tractable solution, d2(u) can be modified as

d2(u) ≈ uHΛu

uHΩu
, (16)

where the matrices Λ and Ω are defined as Λ = ΘuuHΘH and
Ω = ΓuuHΓH + Ψ, which are dependent on u. Similar to the
standard form of the Rayleigh quotient, the objective function can
be further simplified as

max.
uHΛu

uHΩ
1
2Ω

1
2u

=max.
vHΩ− 1

2ΛΩ− 1
2 v

vHv
=max.

vHΞv

vHv
, (17)

where the matrix Ξ and the vector v are given by Ξ = Ω− 1
2ΛΩ− 1

2

and v = Ω
1
2u. Now, the optimization problem can be solved itera-

tively and its solution during the ith iteration is discussed below.
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Fig. 1: Theoretical and simulated performance comparison of T (Z)
for varying L ∈ {1, 2} andM = {100, 250} in a WSN with pp = 5
dB and SNR pu = {−18, 10} dB.
Theorem 2. The ith iteration signaling vector u(i) that aims to
enhance the detection performance of the proposed fusion rule in
(10) for mmWave massive MIMO WSN can be expressed as u(i) =(
Ω
(
u(i−1)

))− 1
2
v(i), where the ith iteration vector v(i) can be ob-

tained by solving the objective function

max .
v(i)

v(i)HΞ(u(i−1))v(i)

v(i)Hv(i)
, (18)

where the vector v(i) =
(
Ω
(
u(i−1)

)) 1
2
u(i) and the matrix

Ξ
(
u(i−1)

)
=

(
Ω
(
u(i−1)

))− 1
2
Λ
(
u(i−1)

)(
Ω
(
u(i−1)

))− 1
2 . The

matrices Ω
(
u(i−1)

)
and Λ

(
u(i−1)

)
are evaluated by replacing

u with u(i) in (16) with the matrix U(0) during the 0th iteration
initialized to a semi-orthogonal matrix.

The solution to the problem in (18) during the ith iteration is
given as v(i) = κν(i−1), where κ is the power scaling factor and
ν(i−1) is the eigenvector associated with the maximum eigenvalue
of Ξ(i−1). Hence, the transmit signaling vector for the ith iteration

can be given as u(i) = κ
(
Ω
(
u(i−1)

))− 1
2
ν(i−1).

6. SIMULATION RESULTS

For simulations, K = 12 sensors are assumed to be deployed within
an annular region [r0, R], where R = 200 m is the cell radius and
r0 = 1 m is the minimum distance between the FC and the sen-
sors. The FC, equipped with a massive antenna array comprising of
M = 250 antennas [5], is assumed to be located at the cell cen-
ter. The local performance metrics of the sensors PD,k and PF,k
are assumed to be uniformly distributed in the range [0.95, 0.40]
and [0.01, 0.12], respectively. The small-scale fading coefficients
are generated according to the Rayleigh channels. Further, the path-
loss model is considered as βk = zk(rk/r0)

−ν , where zk is the
log-normal random variable with mean µ = 4 dB and standard devi-
ation σ = 2 dB, rk is the distance of the kth sensor from the FC and
ν = 2 is the path-loss exponent. The maximum number of prop-
agation paths Lm is chosen as Lm = 10, carrier frequency fc as
fc = 28 GHz, training power pp as pp = 5 dB and noise variance
σ2
n as σ2

n = 1 [5].
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Fig. 2: Performance comparison of T (Z) with semi-orthogonal and
deflection-coefficient maximization based signaling matrix forM =
250, pp = 5 dB, SNR pu = −18 dB and L = {1, 2}.

In Fig. 1, we demonstrated the receiver operating characteristic
(PD vs. PFA) of the proposed fusion rules for different signaling
intervals L = {1, 2}, SNR pu = {−18, 10} dB, and number of
antennas M = {100, 250} at the FC. From the results, it can be
inferred that the performance enhances by allocating more signaling
intervals to each sensor. The performance can be further improved
by adding more antennas at the FC, thus validating the advantage
of exploiting massive MIMO technology. Further, they closely ap-
proach the performance of perfect CSI fusion rules. The theoretical
results determined in Theorem 1 are in close agreement with sim-
ulated plots, hence, confirming our analytical findings. The perfor-
mance of the max-log fusion rule in (13) approach the performance
of the optimum fusion rule in (9) at high SNR.

In Fig. 2, we contrasted the performance of the proposed test
for semi-orthogonal and transmit signaling matrix design, derived in
Section 5, for L = {1, 2}. To generate the semi-orthogonal matrix
design, a sub-matrix of sizeK×L is chosen from a Hadamard matrix
of size K ×K, which is subsequently multiplied by the local sensor
decisions. Since the deflection-coefficient maximization based sig-
naling matrix allocates the sensor transmit power in the direction of
the eigenvector corresponding to the maximum eigenvalue. Hence,
improved detection performance is observed corresponding to the
optimized transmit signaling matrix design.

7. CONCLUSIONS AND FUTURE WORKS

This work is the first attempt that employs sparse Bayesian learning
for CSI estimation to facilitate decision fusion in mmWave massive
MIMO setup. To circumvent the computational complexity and the
unavailability of closed-form performance of the LLR test, we have
proposed a hybrid combining-based fusion rule design and charac-
terized its closed-form analytical performance. The detection coef-
ficient maximization framework is developed to determine the sig-
naling matrix design to further improve the detection performance
of the proposed rule. For the considered framework, the simulated
detection performance is in close agreement with the analytical re-
sults, thus validating the analytical findings. Further, the impact of
employing the transmit signaling matrix design on the system per-
formance is also investigated through simulation results. We are
planning to extend the proposed framework for distributed antenna
architecture in the future.
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